9 research outputs found

    Linse

    No full text

    LETTER OF INTENT TO STUDY e+ e- ANNIHILATIONS AT LEP

    No full text

    Analytical methods for lignocellulosic biomass structural polysaccharides

    No full text
    The use of lignocellulosic biomass has been postulated as a potential pathway toward diminishing global dependence on nonrenewable sources of chemicals and fuels. Before a specific feedstock can be selected for biochemical conversion into biofuels and bio-based chemicals, it must first be characterized to evaluate the chemical composition of the cell walls. Polysaccharides, specifically cellulose and hemicellulose, are often the focal point of these appraisals, since these constituents are the dominant substrates converted into monomeric sugars like glucose and xylose. These monosaccharides can be transformed, using microorganisms like yeast, into substances such as ethanol. Plant species containing abundant polysaccharides are highly desirable, as higher quantities of sugars should translate into larger end-product yields. Given the vast pool of potential feedstocks, qualitative and quantitative analytical methods are needed to assess cell wall polysaccharides. Many of these tools, such as wet chemical and chromatographic techniques, have been ubiquitously used for some time. Shortcomings in these analyses, however, prevent their usage in screening large sample sets for quintessential, high-yield, fuel-producing traits. This chapter briefly summarizes how analytical spectroscopy can lessen some of these limitations and how it has been utilized for polysaccharide analysis

    Mesenchymale orale Tumoren

    No full text
    corecore